Land Information System (LIS)
LIS 7.4 UsersO Guide

Version 2.0, 22 Jun 2022



Table of Contents

1. Introduction
1.1. WhatOs New
2. Background
2.1. LIS
2.2. LIS core
3. Preliminary Information
3.1. Commands
3.2. File names
4. Obtaining the Source Code
4.1. Important Note Regarding File Systems
4.2. Public Release Source Code
4.3. master branch
4.4. Source files
4.5. Documentation
5. Building the Executable
5.1. LISF Dependencies
5.2. Build Instructions
6. Running the Executable
6.1. Command line arguments
7. Test-cases
7.1. Public tests
7.2. Internal tests
8. Output Data Processing
8.1. Fortran binary output format
8.2. GRIB1 output format
8.3. NetCDF output format
9. LIS config File
9.1. Overall driver options
9.2. Runtime options
9.3. Forecast runmode
9.4. Data assimilation
9.5. Bias estimation
9.6. Radiative Transfer/Forward Models
9.7. Optimization and Uncertainty Estimation
9.8. Parameters
9.9. Forcings
9.10. Supplemental forcings

9.11. Land surface models

42
42
42
14
14
14
45
45
45
16
16
35
36
36
36
49
49
50
50
50
52
53
53
53
54
54
62
/0
A1
/6
107
111
124
133
145
158



9.12. Lake models 210

9.13. Open water models 211
9.14. Land slide models 211
9.15. Irrigation 213
9.16. Routing 214
9.17. Runoff 220
9.18. Model output configuration 222
9.19. Defining a time interval 223
10. Specification of Input Forcing Variables 225
11. Model Output Specifications 227
12. User Support 236
12.1. Requesting Help 236
12.2. Bug Reports 236
Appendix A: Frequently Asked Questions 238
Appendix B: LIS Binary File Convention 239
B.1. Introduction 239
B.2. Byte order 239
B.3. Storage organization 239
B.4. Missing/undefined values 239
B.5. File name extension convention and access code samples 239

Appendix C: CSIRO Open Source Software License Agreement (variation of the BSD / MIT
License) 241

References 244



Revision
2.0

1.19
1.18
1.17

1.16
1.15

1.14

1.13
1.12
111

1.10
1.9
1.8

1.7

1.6

15

14
13
1.2

11
1.0

Summary of Changes

LISF Public 7.4.0 release
LISF Public 7.3.4 release
LISF Public 7.3.2 release

Updates for LISF 557WW 7.4.6
release

LISF Public 7.3.1 release

Updates for LISF 557WW 7.4.0
release

Updates for LIS 557WW 7.3.3
release

LISF Public 7.3.0 release
LIS 557WW 7.3.0 release

LIS 557WW 7.3 release
candidate 4

LIS 7.2 557WW release
LIS 7.2 AFWA Beta release

Updates regarding public
release vs repository

Updates for LIS 7.2r Public
Release

Updates for LIS 7.1 AFWA
Release

Updates for LIS 7.1rp7 Public
Release

LIS 7.1 AFWA FY15 Deliverable
LIS 7.1rpl1 Public Release

Note unavailability of MERRA2
forcing data

LIS 7.1 Public Release

LIS 7.1 Initial AFWA Release

Date

Jun 22, 2022
May 27, 2022
Dec 06, 2021

Nov 17, 2021

Mar 31, 2021
Mar 4, 2021

Jan 25, 2021

Dec 21, 2020
Aug 24, 2020
Aug 28, 2019

Feb 2, 2018
Nov 24, 2017

Aug 7, 2017

May 5, 2017

August 29, 2016

August 4, 2016

July 28, 2016

December 15, 2015

May 29, 2015

May 27, 2015
April 13, 2015



Chapter 1. Introduction

This is the Land Information System (LIS) UserOs Guide. This document describes how to download
and install the code and data needed to run the LIS executable for LIS revision 7.4. It describes how
to build and run the code, and finally this document also describes how to download output data-
sets to use for validation.

This document consists of 12 sections, described as follows:

1. Introduction : the section you are currently reading.
2. Background : general information about the LIS project.

3. Preliminary Information . general information, steps, instructions, and definitions used
throughout the rest of this document.

4. Obtaining the Source Code : the steps needed to download the source code.

5. Building the Executable  : the steps needed to build the LIS executable.

6. Running the Executable : the steps needed to prepare and submit a run, also describes the

various run-time configurations.
7. Test-cases: describes the LIS test cases.
8. Output Data Processing : the steps needed to post-process generated output for visualization.

9. LIS config File : describes the user-configurable options.

10. Specification of Input Forcing Variables . describes the user-configurable input forcing

variable options.
11. Model Output Specifications . describes the user-configurable output variable options.

12. User Support : describes how to request help from and provide feedback to the LISF
development team.

1.1. WhatOs New

1.1.1. Version 7.4

1. Includes new runmodes

! National Unified Operational Prediction Capability (NUOPC) coupled runmode
2. Includes additional surface models

I Crocus 8.1 snow model
3. Supports additional metforcing datasets

I metforcing extracted from COAMPS output (COAMPSout)

I metforcing extracted from WRF output over Alaska domain (WRFAKdom)

I metforcing extracted from WRF output (WRFoutv2)

I NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP)



PLUMBER?2 station data

4. Supports additional data assimilation observation datasets

MCD15A2H LAI

SMOS near-real-time neural-network L2 soil moisture (SMOS NRT NN L2 SM)
Snow Data Assimilation System (SNODAS)

Thermal hydraulic disaggregation of soil moisture (THySM)

hydroweb water level

5. Removes the following metforcing datasets

AGRMET radiation (latlon)

I AMMA land surface model intercomparision project phase 2 (ALMIPII)

Walnut Gulch meteorological station data (ARMS)

Canadian Precipitation analysis (CaPA)

CEOP

COOP

ECMWEF reanalysis

Single-point FASST product (FASSTsingle)

GDAS(3d)

GDAS profile data from the PMM land surface working group (GDAS(LSWG))
GEOS

GMAO Modern Era Retrospective-Analysis for Research and Applications data (MERRA-
Land)

North American Land Data Assimilation System forcing product (NLDAS1)
PILDAS

NOAA OHD RDHM 3.5.6 forcing data (RDHM 3.5.6)

Rhone AGG

6. Disables the following external runoff data sources

GLDAS1 runoff data
GLDAS?2 runoff data
NLDAS?2 runoff data
MERRA2 runoff data
ERA interim land runoff data

GWB MIP runoff data

7. Disables the following parameters

MODIS near-real time LAI



1.1.2. LIS7.3

1. Includes new runmodes
I RTMforward runmode
I AGRMET ops runmode
I GCE-coupled runmode
! landslide optUE runmode
2. Includes additional surface models
! NoahMP 3.9.1.1 glacier model
I template glacier model
! FLake 1.0 lake model
I AWRA-L 6.0.0 land model
I Jules 5.0 land model
I Noah 3.9 land model
I NoahMP 4.0.1 model
Includes HYMAP?2 router
Includes ESPboot forecasting algorithm
Includes GLS landslide application

Includes TRIGRS landslide application

N o g ~ ®

Includes additional data assimilation algorithms
I extended Kalman filter algorithm
I ensrf algorithm
I particle filter algorithm
8. Includes additional optimization and uncertainty alogrithms
! Enumerated Search algorithm
I Shuffled Complex Evolution - University of Arizona (SCEUA) algorithm
9. Includes Levenberg-Marquadt (LM) parameter estimation objective function
10. Supports additional real-time parameters
I albedo parameters
I emissivity parameters
I roughness parameters
11. Supports additional metforcing datasets
I AMMA land surface model intercomparision project phase 2 (ALMIPII) metforcing data
I Australian Water Resource Assessment Landscape (AWRA-L) metforcing data

I Canadian Precipitation Analysis (CaPA) data



I FASSTsingle metforcing data

I downscaled MERRAZ2 precipitation data over the High Mountain Asia domain from GMU
(HIMAT_GMU)

! Loobos metforcing data
I arms metforcing data
I era5 metforcing data
I gdas3d metforcing data
I gefs metforcing data
I mrms metforcing data
! pptEnsFcst metforcing data
I usaf metforcing data
12. Supports additional data assimilation observation datasets
I sSimGRACE_JPL observations
I syntheticSnowTb observations
I syntheticlst observations
I syntheticsf observations
I syntheticsm observations
I syntheticsnd observations
I syntheticswe observations
I syntheticwl observations
I AMSRE SWE observations
I AFWA NASA snow algorithm (ANSA) SWE retrievals
I ASCAT_TUW observations
I ASO_SWE observations
I GLASS Albedo observations
I GLASS LAI observations
I IMS_sca observations
I International Satellite Cloud Climatology Project (ISCCP) skin temperature observations
I MODIS SPoRT LAI observations
I NASA SMAP vegetation optical depth retrievals
I SMAP near-real time (NRT) soil moisture observations
I SMOPS AMSR?2 soil moisture observations
I SMOPS ASCAT soil moisture observations
I SMOPS SMAP soil moisture observations

I SMOPS SMOS soil moisture observations



13.

I SNODEP observations
! SYN_LBAND_TB observations
I USAFSI observations
I WindSat_Cband_sm observations
I multisynsmobs observations
Supports additional parameter estimation observation datasets
I Walnut Gulch (WG) PBMR soil moisture observations
I ARM observations
I ARSsm observations
I Ameriflux observations
I CNRS observations
I FLUXNET observations
! Global_LS data observations
I ISCCP_Tskin observations
I ISMNsm observations
I Macon_LS_data observations
I SMAP soil moisture observations
I University of Arizona (UA) swe/snow depth observations
I USDA ARS soil moisture observations

I pesynsml observations

1.13.LIS7.2

© ©o N o v

Includes the NOAA Rapid Update Cycle (RUC) 3.7.1 land surface model
Includes the ensemble streamflow prediction (ESP) conventional forecasting runmode
Includes additional parameter and uncertainty estimation support
I Differential evolution Markov chain (DEMC)
! Levenberg-Marquardt
I Random walk Markov chain monte carlo
Includes additional radiative transfer model support
I Tau Omega
Data assimilation is performed on the observation grid
Supports HYMAP runoff data
Supports ANSA snow depth observations
Supports GCOMW AMSR?2 L3 soil moisture observations

Supports GCOMW AMSR2 L3 snow depth observations



10. Supports NASA SMAP soil moisture observations

11. Supports PILDAS soil moisture observations

12. Supports SMMR snow depth observations

13. Supports SMOS L2 soil moisture observations

14. Supports SMOS NESDIS soil moisture observations
15. Supports SSMI snow depth observations

16. Supports AWAP precipitation data

17. Supports LDT generated met forcing climatology data
18. Supports generic ensemble forecast met forcing data

19. Supports GRIB 2 formatted output

1.14.LIS7.1
1. Includes Noah 3.6
2. Includes NoahMP 3.6
3. Includes CABLE 1.4b
4. Includes Flake 1.0 N internal use only!
5. Includes flood irrigation
6. Includes drip irrigation
7. Supports SMOS L2 soil moisture observations
8. Supports simulated GRACE products
9. Supports GCOMW AMSR2 L3 soil moisture observations
10. Supports VIIRS Daily GVF data
11. Supports TRMM 3B42 V7 real time precipitation
12. Supports Gaussian T1534 GFS met forcing data
13. Supports MERRA-2 met forcing data N these data are not currently available to external users;

they should become available in July 2015
14. Supports LDT-generated met forcing data

15. Supports downscaling precipitation (PRISM) (NLDAS-2 only)

1.15. LIS7.0

1. Requires companion Land Data Toolkit (LDT) input data and parameter preprocessor
2. Includes VIC 4.1.2.1

3. Includes RDHM 3.5.6 (SacHTET and Snow17)

4. Includes demand sprinkler irrigation

5. Includes HYMAP routing



6. Includes NLDAS routing
7. Includes radiative transfer model support

I LIS-CRTM2EM N LIS' implementation of JCSDAOs CRTM2 with emissivity support
Seehttp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/
I LIS-CMEM3 N LIS' implementation of ECMWFOs CMEM 3.0

See http://old.ecmwf.int/research/data_assimilation/land_surface/cmem/cmem_source.html
for the original code.
8. Includes parameter and uncertainty estimation support
I Genetic algorithm (GA)
I Monte Carlo sampling (MCSIM)
! Differential evolution Markov chain z (DEMC2z)
9. Supports ensemble of met forcing sources
10. Supports GEOS 5 forecast met forcing data
11. Supports PALS met forcing data
12. Supports PILDAS met forcing data
13. Supports ECV soil moisture data assimilation
14. Supports GRACE data assimilation
15. Supports PMW snow data assimilation
16. Supports SMOPS soil moisture data assimilation
Note that the notion of a base forcing and a supplemental forcing have been replaced with the

notion of a meteorological forcing. Thus the support in baseforcing and in suppforcing have been
combined into metforcing .

Note that LIS is developing support for surface types other than land. Thus all the land surface
models contained in  Isms have been moved into surfacemodels/land .

Note that the companion program LDT is now required to process input parameters. Thus the
support for static and climatological parameters have been removed from params and placed into
LDT.

1.16.LIS6.2

=

. Includes VIC 4.1.1.

Includes CABLE 1.4b N restricted distribution.
Includes Catchment F2.5.

Includes Noah 3.3.

Includes SiB2.

© a ~ w b

Includes WRSI.


http://ftp.emc.ncep.noaa.gov/jcsda/CRTM/
http://old.ecmwf.int/research/data_assimilation/land_surface/cmem/cmem_source.html

7. Support for North American Mesoscale Forecast System (NAM) 0242 AWIPS Grid -- Over AlaskaO
product.
8. Support for USGS potential evapotranspiration (PET) data (for use in WRSI).
9. Support for Climate Prediction CenterOs (CPC) Rainfall Estimates version 2 (RFE2) daily
precipition (for use in WRSI).
10. Support to apply lapse-rate correction to bottom temperature field (for use in Noah).
1.1.7.L1S6.1
1. Includes Noah 3.1.
2. Includes Noah 3.2.
3. Support for SPoRT Daily GVF data.
4. Support for North American Regional Reanalysis (3d) (NARR) data.
5. Support for NCEPOs modified IGBP MODIS landcover data.
6. Support to specify direction for output variables.
7. Support for assimilation of ANSA snow depth products, MODIS snowcover, and LPRM retrievals
of AMSRE soil moisture.
1.1.8. LIS 6.0
1. Modules have been restructured to streamline public and private interfaces
2. Restructured AGRMET processing N parallel support, lat/lon support.
3. This version now uses ESMF 3.1.0rp3.
4. Support for computational halos.
5. Allows mosaicing of different forcings concurrently (e.g. GDAS global + NLDAS over
CONUS+SALDAS over south america, etc.)
6. Allows multiple overlays of different supplemental forcings (e.g. GDAS overlaid with NLDAS,
AGRMET, STAGEIV)
7. Allows concurrent instances of data assimilation
8. Includes a highly configurable 1/O interface (Allows unit conversions, temporal averaging,
model-independent support for binary, Gribl and NETCDF)
9. Includes support for 3d forcing (that includes the atmospheric profile) and a configurable
specification of the forcing inputs
10. A dynamic bias estimation component (from NASA GMAO) has been added to the data
assimilation subsystem.
11. Generic support for parameter estimation/optimization with the implmentation of a heuristic
approach using Genetic Algorithms.
12. New sources for data assimilation (using NASA and NESDIS retrievals of AMSRE soil moisture)
13. Support for real time GVF data from NESDIS and MODIS



14. A suite of upscaling algorithms to complement the existing spatial downscaling algorithms.
15. Support for new map projections N UTM

16. Support for forward modeling using radiative transfer models, and support for radiance based
assimilation

1.1.9.LIS5.0

1. This version includes the infrastructure for performing data assimilation using a number of
different algorithms from simple approaches such as direct insertion to the more sophisticated
ensemble kalman filtering.

2. More streamlined support for different architectures: A configuration based specification for
the LIS makefile.

3. The data assimilation infrastructure utilizes the Earth System Modeling Framework (ESMF)
structures. The LIS configuration utility has been replaced with the corresponding ESMF utility.

1.1.10. LIS 4.2

1. Completed implementation of AGRMET processing algorithms
2. Ability to run on polar stereographic, mercator, lambert conformal, and lat/lon projections

3. Updated spatial interpolation tools to support the transformations to/from the above grid
projections

4. Switched to a highly interactive configurations management from the fortran namelist-based
lis.crd style.

5. Streamlined error and diagnostic logging, in both sequential and parallel processing
environments.

6. extended grib support; included the UCAR-based read-grib library

7. Support for new supplemental forcing analyses N Huffman, CMORPH

1.1.11. LIS 4.1

1. Preliminary AFWA support
2. Ability to run on a defined layout of processors.
3. Updates to plugins, preliminary implementation of alarms.

4. Definition of LIS specfic environment variables.

1.1.12. LIS 4.0.2

1. GSWP-2 support N LIS can now run GSWP-2 experiments. Currently only CLM and Noah models
have full support.

2. Updates to the 1km running mode.

3. Updates to the GDS running mode.

10



1.1.13. LIS 4.0

1. VIC 4.0.5 N LIS' implementation of VIC has been reinstated.

1.1.14. LIS 3.1

1. New domain-plugin support N facilitates creating new domains.

2. New domain definition support N facilitates defining running domains. Sub-domain selection
now works for both MPI-based and non MPI-based runs.

New parameter-plugin support N facilitates adding new input parameter data-sets.
New LIS version of ipolates N facilitates creating new domains and base forcing data-sets.
Compile-time MPI support N MPI libraries are no longer required to compile LIS.

Compile-time netCDF support N netCDF libraries are no longer required to compile LIS.

N o g ~ ®»

New LIS time manager support N ESMF time manager was removed. ESMF libraries are not
required in this version of LIS.

1.1.15. LIS 3.0
1. Running Modes N Now there is more than one way to run LIS. In addition to the standard MPI
running mode, there are the GDS running mode and the 1 km running mode.

2. Sub-domain Selection N Now you are no longer limited to global simulations. You may choose
any sub-set of the global domain to run over. See Section LIS config File for more details. (This is
currently only available for the MPI-based running mode.)

3. Plug-ins N Now it is easy to add new LSM and forcing data-sets into the LIS driver. See LIS'
DeveloperOs Guide for more details.

11



Chapter 2. Background

This section provides some general information about the LIS project.

2.1. LIS

Land Information System (LIS) is a flexible land surface modeling and data assimilation framework
developed with the goal to integrate satellite- and ground-based observational data products and
advanced land surface modeling techniques to produce optimal fields of land surface states and
fluxes. The LIS infrastructure provides the modeling tools to integrate these observations with
model forecasts to generate improved estimates of land surface conditions such as soil moisture,
evaporation, snow pack, and runoff, at 1km and finer spatial resolutions and at one-hour and finer
temporal resolutions. The fine scale spatial modeling capability of LIS allows it take advantage of
the EOS-era observations, such as MODIS leaf area index, snow cover, and surface temperature, at
their full native resolution. LIS features a high performance and flexible design, provides
infrastructure for data integration and assimilation, and operates on an ensemble of land surface
models (LSM) for extension over user-specified regional or global domains. LIS is designed using
advanced software engineering principles to enable reuse and community sharing of modeling
tools, data resources, and assimilation algorithms. The system is designed as an object-oriented
framework, with abstractions defined for customization and extension to different applications.
These extensible interfaces allow the incorporation of new domains, LSMs, land surface
parameters, meteorological inputs, data assimilation and optimization algorithms. The extensible
nature of these interfaces and the component style specification of the system allow rapid
prototyping and development of new applications. These features enable LIS to serve both as a
Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and
energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for
application areas including disaster management, water resources management, agricultural
management, numerical weather prediction, air quality and military mobility assessment.

LIS currently includes a comprehensive suite of subsystems to support uncoupled and coupled land
data assimilation. A schematic of the LIS framework with the associated subsystems are shown in
the Figure below. The LIS-LSM subsystem, which is the core of LIS, supports high performance,
interoperable and portable land surface modeling with a suite of community land surface models
and input data. Further, the LIS-LSM subsystem is designed to encapsulate the land surface
component of an Earth System model. The LIS-WRF subsystem supports coupled land-atmosphere
modeling through both one-way and two-way coupling to the WRF atmospheric model, leading to a
hydrometeorological modeling capability that can be used to evaluate the impact of land surface
processes on hydrologic prediction. The Data Assimilation (LIS-DA) subsystem supports multiple
data assimilation algorithms that are focused on generating improved estimates of hydrologic
model states. Finally, the Optimization (LIS-OPT) subsystem supports a suite of advanced
optimization and uncertainty modeling tools in LIS.

2.2. LIS core

The central part of LIS software system is the LIS core that controls program execution. The LIS
core is a model control and input/output system (consisting of a number of subroutines, modules
written in Fortran 90 source code) that drives multiple offline one-dimensional LSMs. The one-

12



dimensional LSMs such as CLM and Noah, apply the governing equations of the physical processes
of the soil-vegetation-snowpack medium. These land surface models aim to characterize the
transfer of mass, energy, and momentum between a vegetated surface and the atmosphere. When
there are multiple vegetation types inside a grid box, the grid box is further divided into OtilesO,
with each tile representing a specific vegetation type within the grid box, in order to simulate sub-
grid scale variability.

The execution of the LIS core starts with reading in the user specifications, including the modeling
domain, spatial resolution, duration of the run, etc. Section Running the Executable describes the
exhaustive list of parameters specified by the user. This is followed by the reading and computing

of model parameters. The time loop begins and forcing data is read, time/space interpolation is
computed and modified as necessary. Forcing data is used to specify the boundary conditions to the

land surface model. The LIS core applies time/space interpolation to convert the forcing data to the
appropriate resolution required by the model. The selected model is run for a vector of OtilesO and
output and restart files are written at the specified output interval.

Some of the salient features provided by the LIS core include:

¥ Vegetation type-based OtileO or OpatchO approach to simulate sub-grid scale variability.

¥ Makes use of various satellite and ground-based observational systems.

¥ Derives model parameters from existing topography, vegetation, and soil coverages.

¥ Extensible interfaces to facilitate incorporation of new land surface models, forcing schemes.

¥ Uses a modular, object oriented style design that allows Oplug and playO of different features by
allowing user to select only the components of interest while building the executable.

¥ Ability to perform regional modeling (only on the domain of interest).
¥ Provides a number of scalable parallel processing modes of operation.
Please refer to the software design document for a detailed description of the design of LIS core.

The LIS reference manual provides a description of the extensible interfaces in LIS. The Oplug and
playO feature of different components is described in this document.

13



Chapter 3. Preliminary Information

This section provides some preliminary information to make reading this guide easier.

3.1. Commands

Commands are written with a fixed-width font. E.g.:

% cd /path/to/LIS

% Is

OE compiler flags, then run  gmaked

The %symbol represents the command-line prompt. You do not type that when

NOTE .
entering any of the commands.

3.2. File names

File names are written in italics. E.qg.:

/path/to/LIS/src

14



Chapter 4. Obtaining the Source Code

This section describes how to obtain the source code needed to build the LIS executable.

Beginning with Land Information System Framework (LISF) public release 7.3, the LIS source code
is available as open source under the Apache License, version 2.0. (Please see  ApacheOs web-site for
a copy of the license.) LIS is one of the three main components of LISF (LDT, LIS, and LVT).

From LIS public release 7.1rpl through 7.2, the LIS source code is available as open source under
the NASA Open Source Agreement (NOSA). Please see LISFOs web-sitefor a copy of the NOSA.

Due to the history of LISO development, versions of the LIS source code prior to 7.1rpl may not be
freely distributed. Older source code is available only to U.S. government agencies or entities with a
U.S. government grant/contract.  LISFOs web-siteexplains how qualified persons may request a copy
of older source code.

All users are encouraged to go to  LISFOs web-siteto fill in the Registration Form and

NOTE . S
join the mailing list.

4.1. Important Note Regarding File Systems

LIS is developed on Linux/Unix platforms. Its build process expects a case sensitive file system.
Please make sure that you unpack and/or  git clone the LISF source code into a directory within a
case sensitive file system. In particular, if you are using LIS within a Linux-based virtual machine
hosted on a Windows or Macintosh system, do not compile/run LIS from within a shared folder.
Move the LISF source code into a directory within the virtual machine.

4.2. Public Release Source Code

The LISF public release 7.4 source code is available both on LISFOs web-siteunder the OSourceO
menu and on GitHub under the NASA-LIS organization at https://github.com/NASA-LIS/LISF  under
the OReleasesO link.

After downloading the LISF tar-file:

Step 1

Create a directory to unpack the tar-file into. LetOs call it TOPLEVELDIR.

Step 2

Place the tar-file in this directory.

% mv LISF_public_release_7.4.0.tar.gz TOPLEVELDIR

15


https://www.apache.org/licenses/LICENSE-2.0
https://lis.gsfc.nasa.gov
https://lis.gsfc.nasa.gov
https://lis.gsfc.nasa.gov
https://lis.gsfc.nasa.gov
https://github.com/NASA-LIS/LISF

Step 3

Go into this directory.

% cd TOPLEVELDIR

Step 4

Unzip and untar the tar-file.

% gzip -dc LISF_public_release_7.4.0.tar.gz | tar xf -

4.3. master branch

The LIS source code is maintained in a git repository hosted on GitHub. If you wish to work with the
latest development code (in the master branch), then you must use the git client to obtain the LISF
source code. If you need any help regarding  git or GitHub, please go to https://github.com .

Step 1

Create a directory to clone the code into. LetOs callit TOPLEVELDIR.
Step 2

Go into this directory.

E % cd TOPLEVELDIR

Step 3

Clone the master branch.

% git clone https://github.com/NASA-LIS/LISF

4.4. Source files

Unpacking or cloning the LISF source code (according to the instructions in Section Obtaining the
Source Code) will create a directory named  LISF. The LIS specific source code isin LISF/lis.

The directory containing the LIS source code, LISF/lis, will be referred to as

NOTE :
$WORKING throughout the rest of this document.

The structure of LISF/lis is as follows:

16


https://github.com

¥ LICENSES

Directory the NASA Open Source license for LIS along with the licenses of other included

components

¥ RESTRICTED

¥ apps
Directory containing applications built on LIS
¥ arch
Directory containing the configurable options for building the LIS executable
¥ configs
Directory containing some sample LIS configuration files
¥ core
Directory containing core routines in LIS
¥ dataassim
Top level directory for data assimilation support, which includes the following subcomponents
I algorithm
Directory containing the following data assimilation algorithm implementations:
" di
Direct insertion algorithm for data assimilation
" ekf
NASA GMAOOs extended Kalman filter algorithm for data assimilation
" enkf
NASA GMAOOs Ensemble Kalman Filter algorithm for data assimilation
enkfgrace
GRACE Ensemble Kalman Filter algorithm for data assimilation
" ensrf
specifies what?
pf

Particle filter algorithm for data assimilation



18

! biasEstimation

Directory containing the following dynamic bias estimation algorithms:

I obs

gmaoBE

NASA GMAOOs dynamic bias estimation algorithm

Directory containing the following observation handlers for data assimilation:

AMRE_swe

AMSRE snow water equivalent retrievals in HDF4/HDFEOS format

" ANSA_SCF

Blended snow cover fraction from the AFWA NASA snow algorithm
ANSA_SNWD

Snow depth retrievals from the AFWA NASA snow algorithm

" ANSA_SWE

Snow water equivalent retrievals from the AFWA NASA snow algorithm
ASCAT_TUW

ASCAT (TU Wein) soil moisture

" ASO_SWE

specifies what?
ESACCI_sm

ESACCI Essential Climate Variable product

" GCOMW_AMSR2L3SND

AMSR2 snow depth retrievals
GCOMW_AMSR2L3sm

AMSR?2 soil moisture retrievals

" GLASS_ Albedo

specifies what?

GLASS_LAI



specifies what?
GRACE

GRACE soil moisture

" IMS_sca

IMS snow cover area
ISCCP_Tskin

ISCCP skin temperature product in binary format

" LPRM_AMSREsm

Soil moisture retrievals from AMSRE derived using the land parameter retrieval model
(LPRM) from University of Amsterdam

MCD15A2H_LAI

specifies what?

" MODIS_SPORT_LAI

specifies what?
MODISsca

MODIS snow cover area product in HDF4/HDFEOS format

" NASA_AMSREsm

NASA AMSRE soil moisture data in binary format
NASA_SMAPsm

NASA SMAP soil moisture retrievals

" NASA_SMAPvod

NASA SMAP vegetation optical depth retrievals
PMW_snow

PMW snow

" SMAP_NRTsm

SMAP near-real time soil moisture retrievals
SMMR_SNWD

SMMR snow depth

19



20

" SMOPS_AMSR2sm

SMOPS AMSR?2 real time soil moisture
SMOPS_ASCATsm

SMOPS ASCAT A and B real time soil moisture

" SMOPS_SMAPsm

SMOPS SMAP real time soil moisture
SMOPS_SMOSsm

SMOPS SMOS real time soil moisture

" SMOS_L2sm

SMOS L2 soil moisture
SMOS_NESDIS

SMOS NESDIS soil moisture retrievals

" SMOS_NRTNN_L2sm

SMOS near-real-time neural-network L2 soil moisture (SMOS NRT NN L2 SM)

SNODAS

Snow Data Assimilation System (SNODAS)

" SNODEP

AFWA snowdepth data in Grib1 format
SSMI_SNWD

SSMI snow depth

" SYN_LBAND_TB

Synthetic L-band brightness temperature
THySM

Thermal hydraulic disaggregation of soil moisture (THySM)

" USAFSI

USAF Snow and Ice Analysis

WindSat_Cband_sm



C-band soil moisture retrievals from WindSat
" WindSat_sm
X-band soil moisture retrievals from WindSat
" hydrowebWL
hydroweb water level
pildas
PILDAS soil moisture observations (such as one generated from a previous LIS LSM run)
" simGRACE_JPL
Synthetic soil moisture retrievals from GRACE

This directory also includes the following synthetic data handler examples:

multisynsmobs

Synthetic soil moisture data with multiple observation types
" syntheticSnowThb

specifies what?

syntheticlst

Synthetic land surface temperature data handler

" syntheticsf

Synthetic streamflow data handler

syntheticsm

Synthetic soil moisture data handler (produced from a LIS LSM run)
" syntheticsnd

Synthetic snow depth data handler

syntheticswe

Synthetic snow water equivalent data handler

" syntheticwl

specifies what?

! perturb



Directory containing the following perturbation algorithm implementations
" gmaopert
NASA GMAOQs perturbation algorithm
" uniform
specifies what?
¥ forecast
Top level directory for forecasting support, which includes the following subcomponents
! algorithm
Directory containing the following forecasting algorithm implementations
" ESPboot
Boot ensemble streamflow prediction
" ESPconv
Conventional ensemble streamflow prediction
¥ interp
Generic spatial and temporal interpolation routines
¥ irrigation
Directory containing the following irrigation schemes
I drip
Drip irrigation scheme
! flood
Flood irrigation scheme
I sprinkler
Demand sprinkler irrigation scheme
¥ lib
Directory contains the following RTM-related libraries

! lis-cmem3
I lis-crtm

I lis-crtm-profile-utility

22



¥ make
Directory containing Makefile and needed header files for building LIS executable
¥ metforcing

Top level directory for base meteorological forcing methods, which includes the following
implementations

I 3B42RT
TRMM 3B42RT precipitation product
I 3B42RTV7
TRMM 3B42RTV7 precipitation product
I 3B42V6
TRMM 3B42V6 precipitation product
I 3B42Vv7
TRMM 3B42V7 precipitation product
I AWAP
AWAP precipitation product
I AWRAL
Australian Water Resource Assessment Landscape (AWRA-L) metforcing data
! Bondville
Bondville forcing products
I COAMPSout
Metforcing extracted from COAMPS output (COAMPSout)
I HIMAT_GMU

Downscaled MERRAZ2 precipitation data over the High Mountain Asia domain from GMU
(HIMAT_GMU)

! Loobos
specifies what?
I PALSmetdata

PALS station data

23



24

| RFE2Daily

RFE2 precipitation product from FEWSNET (diurnally non-disaggregated)

! RFE2gdas

RFE2 precipitation product from FEWSNET bias corrected against GDAS data

I WRFAKdom

Metforcing extracted from WRF output over Alaska domain (WRFAKdom)

I WRFout

Metforcing extracted from WRF output (WRFout)

I WRFoutv2

Metforcing extracted from WRF output (WRFoutv2)

I agrradps

AGRMET radiation product (polar stereographic prjection)

I chirps2

UCSB CHIRPS v2.0 satellite-gage merged precipitation product

! climatology

LDT-generated forcing climatologies

I cmap

CMAP precipitation product

I cmorph

CMORPH precipitation product

I ecmwf

ECMWF meteorological forcing data

I erab

specifies what?

! gdas

NCEP GDAS meteorological forcing data

| gdasT1534



NCEP GDAS GFS T1534 meteorological forcing data

! gddp

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP)
I gefs

specifies what?

I genEnsFcst

User-derived ensemble forecast data

I genMetForc

LDT-generated meteorological forcing data

| geosb5fcst

NASA GEOS 5 meteorological forecast forcing data

I gfs

NCEP GFS meteorological forcing data

I gldas

NASA GMAO GLDAS meteorological forcing data

I gswpl

Global Soil Wetness Project-1 meteorological forcing data
I gswp2

Global Soil Wetness Project-2 meteorological forcing data
I imerg

GPM L3 precipitation product

I merra2

GMAO Modern Era Retrospective-Analysis for Research and Applications data

T mrms

National Center for Environmental Prediction (NCEP) Multi-Radar/Multi-Sensor (MRMS)
Doppler Radar+gage product.

I nam242

North American Mesoscale Forecast System (NAM) 242 AWIPS Grid -- Over Alaska product

25



26

ronarr

North American Regional Reanalysis (3d) data

I nldas2

North American Land Data Assimilation System 2 forcing product

| pet_usgs

Daily potential evapotranspiration data from the USGS FAO-PET method, using GDAS forcing
fields as inputs

I plumber2

PLUMBER?2 station data

I pptEnsFcst

specifies what?

I princeton

Renalaysis product from Princeton University ( [sheffield_etal 2006] )

1 scan

Soil Climate Analysis Network precipitation product

! snotel

SNOTEL meteorological forcing data

I stg2

NCEP Stage IV QPE precipitation product

! stgd

NCEP Stage Il precipitation product

I templateMetForc

An empty template for meteorological forcing data implementations

I usaf

Routines for generating meteorological forcing data in the OAGRMET opsO running mode and
for handling said data when running in the OretrospectiveO runmode

I vicforcing

VIC 4.1.1 pre-processed meteorological forcing data



! vicforcing.4.1.2
VIC 4.1.2 pre-processed meteorological forcing data
¥ offline
Directory containing the main program for the offline mode of operation
¥ optUE
Top level directory for optimization support, which includes the following subcomponents
I algorithm
Directory containing the following optimization algorithm implementations

" DEMC
Differential evolution Monte Carlo algorithm

" DEMCz
Differential evolution Monte Carlo Z algorithm

" ES
Enumerated search

" GA
Single objective Genetic Algorithm

" LM
Levenberg-Marquardt gradient search algorithm

" MCSIM
Monte Carlo simple propagation scheme

" RWMCMC
Random walk Markov chain monte carlo algorithm

" SCE-UA

Shuffled Complex Evolutionary Algorithm

I type

" paramestim

Directory for parameter estimation support



28

The directory for parameter estimation support

subcomponents

objfunc

" LL

Maximum likelihood

" LM

Objective function definition for LM algorithm

" LS

Least squares based objective function

IIP

Prior function definition

" obs

" AMSRE_SR
" ARM

specifies what?
" ARSsm

specifies what?
" Ameriflux

In-situ observations from Ameriflux
" CNRS

specifies what?

" EmptyObs
" FLUXNET

specifies what?
" Global LS data

Global landslide observational data

paramestim

includes the following

Directory containing the following objective function evaluation methods

Directory containing the following observation handlers for parameter estimation



" ISCCP_Tskin

ISCCP land surface temperature observations
" ISMNsm

specifies what?
" LPRM_AMSREsm

Soil moisture retrievals from AMSRE derived using the land parameter retrieval
model (LPRM) from University of Amsterdam

Macon_LS data

Macon County North Carolina landslide observational data
" SMAPsm

SMAP soil moisture observational data

UAsnow

University of Arizona (UA) swe/snow depth observations

USDA_ARSsm

USDA Agricultural Research Service soil mositure retrievals

pesynsml

Synthetic soil moisture observations

template

" wgPBMRsm
PBMR soil moisture data for the Walnut Gulch watershed
¥ params
Directory containing implementations of the following land surface model parameters

I albedo

Routines for handling albedo data products
I emissivity

Routines for handling emissivity data products
I gfrac

Routines for handling green vegetation fraction data products

29



I lai
Routines for handling Leaf/Stem area index data products
I roughness
Routines for handling roughness data products
¥ plugins
Directory containing modules defining the function table registry of extensible functionalities
¥ routing
Directory containing routing models

I HYMAP_router
I HYMAP2_router
! NLDAS_router

¥ rtms
Directory containing coupling routines to the following radiative transfer models
! CRTM Y
Routines to handle coupling to the JCSDA Community Radiative Transfer Model
I CRTM2"
Routines to handle coupling to the JCSDA Community Radiative Transfer Model, version 2
I CRTM2EM

Routines to handle coupling to the JCSDA Community Radiative Transfer Model Emissions
model

| LIS_CMEM3
Community Microwave Emission Model from ECMWF
I TauOmegaRTM
Routines to handle coupling to the Tau Omega Radiative Transfer Model
¥ runmodes
Directory containing the following running modes in LIS
I RTMforward

Routines to manage the program flow when a forward model integration using a radiative
transfer model is employed

30



I agrmetmode

Routines to manage the program flow in the AFWA operational mode
I forecast

Routines to manage the forecast simulation mode
! gce_cpl_mode

Routines to manage the program flow in the coupled LIS-GCE mode
! landslide_optUE

Routines to manage the program flow in combined use of landslide modeling simulations
and optimization

! nuopc_cpl_mode
National Unified Operational Prediction Capability (NUOPC) coupled runmode
I paramEstimation
Routines to manage the program flow in the parameter estimation mode
I retrospective
Routines to manage the program flow in the retrospective analysis mode
I smootherDA
Routines to manage the program flow in the smoother da analysis mode
I wrf_cpl_mode
Routines to manage the program flow in the coupled LIS-WRF mode not using ESMF
¥ surfacemodels
Top level directory for surface model support, which includes the following subcomponents
I glacier
Directory containing implementations of the following glacier surface models
" noahmp.3.9.1.1
NCAR Noah multiphysics land surface model version 3.9.1.1
" template
An empty template for glacire surface model implementations

! lake



32

Directory containing implementations of the following lake surface models

FLake.1.0

FLake, version 1.0. For internal use only.

! land

Directory containing implementations of the following land surface models

awral.6.0.0

Australian Water Resource Assessment Landscape (AWRA-L) land surface model, version
6.0.0

" cable

CSIRO Atmosphere Biosphere Land Exchange model, version 1.4b
clm2

NCAR community land model, version 2.0

" clsm.f2.5

NASA GMAO Catchment land surface model version Fortuna 2.5
geowrsi.2

GeoWRSI version 2

" hyssib

NASA HySSIB land surface model
jules.5.0

Support for UK Met OfficeOs JULES 5.0 land surface model

" jules.5.1

Support for UK Met OfficeOs JULES 5.1 land surface model
jules.5.2

Support for UK Met OfficeOs JULES 5.2 land surface model

" jules.5.3

Support for UK Met OfficeOs JULES 5.3 land surface model
jules.5.4

Support for UK Met OfficeOs JULES 5.4 land surface model



" jules.5.x

Support for UK Met OfficeOs JULES 5.5 (and higher) land surface model
mosaic

NASA Mosaic land surface model

" noah.2.7.1

NCEP Noah land surface model version 2.7.1

noah.3.2

NCAR Noah land surface model version 3.2

" noah.3.3

NCAR Noah land surface model version 3.3

noah.3.6

NCAR Noah land surface model version 3.6

" noah.3.9

NCAR Noah land surface model version 3.9
noahmp.3.6

NCAR Noah multiphysics land surface model version 3.6

" noahmp.4.0.1

NCAR Noah multiphysics land surface model version 4.0.1
rdhm.3.5.6

NOAA OHD Research Distributed Hydrologic Model version 3.5.6

" ruc.3.7

NOAA Rapid Update Cycle model version 3.7.1
summa.1.0 "

First attempt to incorporate the Structure for Unifying Multiple Modeling Alternatives
(SUMMA) into LIS. For internal use only.

template
An empty template for land surface model implementations

vic.4.1.1

33



Variable Infiltration Capacity model from University of Washington, version 4.1.1
" vic.4.1.2.1
Variable Infiltration Capacity model from University of Washington, version 4.1.2.1
" SubLSM
Directory containing implementations of sub land surface modeling processes.
" crocus.8.1
Crocus 8.1 snow model
! openwater
Directory containing implementations of the following open water surface models
" template
An empty template for open water surface model implementations
¥ testcases
testcases for verifying various functionalities

¥ utils

Miscellaneous helpful utilities

Each of the LSM directories under  surfacemodels/land contain specific plugin
interfaces related to

(1) coupling to WRF and GCE models, (2) Data assimilation instances, (3) Irrigation
instances, (4) Parameter estimation instances, (5) Routing instances, and (6)
Radiative transfer instances.

These routines defined for Noah land surface model version 3.3 are shown below.
Note that similar routines are implemented in other LSMs.

1) Coupling interfaces:
NOTE @) ping

¥ cpl_wrf_noesmf

Routines for coupling Noah with WRF without ESMF

(2) Data assimilation interfaces:
¥ da_snodep

Noah routines related to the assimilation of AFWA SNODEP observations

34



¥ da_snow

Noah routines related to the assimilation of snow water equivalent observations

¥ da_soilm

Noah routines related to the assimilation of soil moisture observations

(3) Irrigation interfaces:
¥ irrigation

Noah routines related to interacting with the irrigation scheme

(4) Parameter estimation interfaces:
¥ pe

Noah routines related to the estimation of soil properties through parameter
estimation

(5) Routing interfaces:
¥ routing

Noabh routines related to interacting with the routing schemes

(6) Radiative transfer model interfaces:

¥ sfc_cmem3
¥ sfc_crtm

¥ sfc_tauomega

4.5. Documentation

Processed documentation for each release may be found on LISFOs web-siteunder the ODocsO menu.
Starting with LISF public release 7.4, processed documentation may also be found on GitHub under
the NASA-LIS organization at  https:/github.com/NASA-LIS/LISF  under the OReleasesO link.

Processed documentation for the master branch is available on GitHub under the NASA-LIS
organizationOs GitHub pages at https://nasa-lis.github.io/LISF/

[1] Not available in the LISF_public_release_7.4.0.tar.gz public release of LISF 7.4.

35


https://lis.gsfc.nasa.gov
https://github.com/NASA-LIS/LISF
https://nasa-lis.github.io/LISF/

Chapter 5. Building the Executable

This section describes how to build the source code and create LIS' executable: named LIS.

Please see Section Important Note Regarding File Systems  for information regarding using a case
sensitve file system for compiling/running LIS.

5.1. LISF Dependencies

Please first read the companion document LISF Installation Guide . This document describes the
required and optional libraries used by LISF. It also describes the supported development
environments.

5.2. Build Instructions

Step 1

Perform the steps described in Section  Obtaining the Source Code to obtain the source code.

Step 2

Go to the $WORKING directory. This directory contains two scripts for building the LIS executable:
configure and compile.

Step 3

Set the LIS_ARCH environment variable based on the system you are using. The following
commands are written using Bash shell syntax.

For a Linux system with the Intel Fortran compiler

% export LIS_ARCH=linux_ifc

For a Linux system with the GNU Fortran compiler

% export LIS_ARCH=linux_gfortran

For a Cray system with the Intel Fortran compiler

% export LIS ARCH=cray _ifc

For a Cray system with the Cray Fortran compiler

% export LIS_ARCH=cray_cray

36



For an IBM system with the GNU Fortran compiler

% export LIS_ARCH=ibm_gfortran

It is suggested that you set this environment variable in a modulefile “ to load or in an
environment script to source before compiling and/or running LIS.

Step 4
Run the configure script first by typing:

% ./configure

This script will prompt the user with a series of questions regarding support to compile into LIS,
requiring the user to specify the locations of the required and optional libraries via several LIS
specific environment variables. The following environment variables are used by LIS.

Variable Description Usage
LIS_FC Fortran 90 compiler required
LIS_CC C compiler required
LIS_MODESMF path to ESMF module files required
LIS_LIBESMF path to ESMF library files required
LIS_OPENJPEG path to openJPEG library required
LIS_ECCODES path to ecCodes library required
LIS_NETCDF path to NetCDF library required
LIS_HDF4 path to HDF4 library optional
LIS_HDF5 path to HDFS5 library optional
LIS_HDFEOS path to HDFEOS?2 library optional
LIS_MINPACK path to MINPACK library optional
LIS_CRTM path to CRTM library optional
LIS_CRTM_PROF path to LIS-CRTM Profile library  optional
LIS_CMEM path to LIS-CMEM library optional
LIS_LAPACK path to LAPACK library optional
LIS_JPEG path to JPEG library optional (use system libjpeg by
default)

Note that the CCvariable must be set to a C compiler, not a C++ compiler. A C++ compiler may
mangle internal names in a manner that is not consistent with the Fortran compiler. This will cause
errors during linking.

It is suggested that you set these environment variables in a modulefile ™ to load or in an

37



environment script to source before compiling and/or running LIS.

You may encounter errors either when trying to compile LIS or when trying to run LIS because the
compiler or operating system cannot find these libraries. To fix this, you must add these libraries to
your $LD_LIBRARY_PAdmvironment variable. For example, say that you are using ESMF, ecCodes,
NetCDF, and HDF5. Then you must execute the following command (written using Bash shell
syntax):

% export
LD_LIBRARY_PATH=$LIS_HDF5/lib:$LIS_LIBESMF:$LIS_NETCDF/lib:${LIS_ECCODES}/Iib:$LD_LIBR
ARY_PATH

It is suggested that you set this environment variable in a modulefile ® to load or in an
environment script to source before compiling and/or running LIS.

Example

An example execution of the configure script is shown below:

38



% ./configure

Setting up configuration for LIS

Parallelism (0-serial, 1-dmpar, default=1):

Optimization level (-3=strict checks with warnings, -2=strict checks, -1=debug,
0,1,2,3, default=2):

Assume little/big_endian data format (1-little, 2-big, default=2):

Use GRIBAPI/ECCODES? (0-neither, 1-gribapi, 2-eccodes, default=2):
Enable AFWA-specific grib configuration settings? (1-yes, 0-no, default=0):
Use NETCDF? (1-yes, 0-no, default=1):

NETCDF version (3 or 4, default=4):

NETCDF use shuffle filter? (1-yes, 0-no, default = 1):

NETCDF use deflate filter? (1-yes, 0-no, default = 1):

NETCDF use deflate level? (1 to 9-yes, 0-no, default = 9):

Use HDF47? (1-yes, 0-no, default=1):

Use HDF57? (1-yes, 0-no, default=1):

Use HDFEOS? (1-yes, 0-no, default=1):

Use MINPACK? (1-yes, 0-no, default=0):

Use LIS-CRTM? (1-yes, 0-no, default=0):

Use LIS-CMEM? (1-yes, 0-no, default=0):

Use LIS-LAPACK? (1-yes, 0-no, default=0):

Use LIS-MKL-LAPACK? (1-yes, 0-no, default=0):

Econfigure.lis file generated successfully

Settings are written to configure.lis in the make directory.
If you wish to change settings, please edit that file.

To compile, run the compile script.

At each prompt, select the desired value. If you desire the default value, then you may simply press
the Enter key.

Most of the configure options are be self-explanatory. Here are a few specific notes:
¥ for Parallelism (O-serial, 1-dmpar, default=1): , dmpar refers to enabling MPI

¥ for Assume little/big_endian data format (1-little, 2-big, default=2): , select the default
value of 2. By default, LIS reads and writes binary data in the big endian format. Only select the
value of 1, if you have reformatted all required binary data into the little endian format.

¥ for Use GRIBAPI/ECCODES? (0-neither, 1-gribapi, 2-eccodes, default=2): , select the default
value of 2. Technically, GRIB support is not required by LIS; however, most of the commonly
used met forcing data are in GRIB, making GRIB support a practical requirement. ecCodes is
ECMWFOs replacement to their GRIB-API library. GRIB-API is supported only for historical
reasons; thus, please use ecCodes.

39



GRIB-API support is now deprecated. Future releases will support only

IMPORTANT
ecCodes.

¥ for Use LIS-CRTM? (1-yes, 0-no, default=0): , if you wish to enable LIS-CRTM2EM support, then
you must also enable LIS-CMEM support. So for Use LIS-CMEM? (1-yes, 0-no, default=0): , you
must also select 1.

¥ for Use LIS-CMEM? (1-yes, 0-no, default=0): , if you wish to enable LIS-CMEM support, then you
must also enable LIS-CRTM. So for Use LIS-CRTM? (1-yes, 0-no, default=0): , you must also
select 1.

Note that due to an issue involving multiple definitions within the NetCDF 3 and HDF 4 libraries,
you cannot compile LIS with support for both NetCDF 3 and HDF 4 together.

Note that if you compiled NetCDF 4 without compression, then when specifying NETCDF version (3
or 4, default=4): , select 3. Then you must manually append -Inetcdff to the LDFLAG®riable in the
make/configure.lis file.

Step 5

Compile the LIS source code by running the  compile script.

% ./compile

This script will compile the libraries provided with LIS, the dependency generator and then the LIS
source code. The executable LIS will be placed in the $WORKING directory upon successful
completion of the compile script.

Step 6

Finally, copy the LIS executable into your running directory, $RUNNING. (See Section Running the
Executable .)

5.2.1. Customizing the build via LIS plugins

Various components within LIS are considered plugins, meaning that they are optional and may be
enabled/disabled at compile-time. By default, most plugins are enabled, only 1) the restricted
components, which are not available in the public releases of LIS, 2) components still under
development, 3) and old/unsupported components are disabled by default. If you wish to compile
LIS with its default plugin configuration, then simply follow the above six steps. You may skip the
rest of this section. If you wish to toggle whether a plugin is enabled/disabled, then you must create
a user.cfg file.

Enabling/disabling a component

To toggle an optional plugin from its default enabled/disabled state, you must create a user.cfg file
in the make sub-directory of the LIS source code.

The format of this file is:

40



component name: On/Off

where the value OOnO indicates to compile the component into the LIS executable, and where OOffO
indicates to exclude the component. And where possible the component name matches the string
found in the plugins/LIS_pluginindices.F90 file.

Note that comments may be added to the user.cfg file. The O#O character marks the beginning of the
comment.

For example, if you want to compile all default components of LIS except for Noah 2.7.1, then create
a user.cfg file containing the follow line:

Example user.cfg file

Noah.2.7.1: Off

Below is a list of all optional components that may be enabled/disabled along with their default
settings.

Not all the optional components listed below are available in the public release of
LIS.

NOTE

Please do not copy this whole list into a  user.cfg file. Create a user.cfg file containing only the
components that you want to toggle.

Table 1. Running modes

Component name Default state
retrospective On
AGRMET ops On
WRF coupling On
GCE coupling Off
param estimation On
RTM forward On
ensemble smoother On
forecast On

Table 2. Metforcings

Component name Default state
Metforcing template On
LDT-generated On
CLIM-Standard On
GenEnsFcst On
PPTENsFcst On

41



Component name
GDAS

GDAS T1534
GEOSS forecast
GEFS forecast
ECMWEF
GSWP1
GSWP2
AGRMET
PRINCETON
NLDAS2
GLDAS

GFS

MERRAZ2

ERAS5

CMAP
CHIRPS2
TRMM 3B42RT
TRMM 3B42RTV7
TRMM 3B42V6
TRMM 3B42V7
CPC CMORPH
GPM IMERG
CPC STAGEI
CPC STAGEIV
NARR
RFE2(daily)
SCAN

AGRMET radiation (polar stereographic)

PLUMBER?2
Bondville
TRIGRS test
SNOTEL

RFE2(GDAS bias-corrected)

42

Default state
On
On
On
On
On
On
On
Off
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
Off
On
On



Component name

VIC processed forcing

PALS station forcing

PET USGS
NAM242
WRFout
COAMPSout
WRFoutv2
WRF AK
AWAP
AWRAL
HIMAT GMU
Loobos
MRMS
GDDP

Table 3. Parameters
Component name
MODIS real-time
ALMIPII LAI
NESDIS weekly
SPORT

VIIRS

ALMIPIl GFRAC
ALMIPII roughness
ALMIPII albedo

ALMIPII emissivity

Table 4. RTMS
Component name
CRTM
CRTM2
CRTM2EM
CMEM

Tau Omega

Default state
Off
On
On
On
On
On
On
On
On
On
On
On
On
On

Default state
Off
On
On
On
On
On
On
On
On

Default state
Off
On
On
On
On

43



Table 5. Applications
Component name
GLS
TRIGRS

Table 6. Routing
Component name
NLDAS router
HYMAP router

HYMAP2 router

Table 7. Irrigation
Component name
Sprinkler
Flood

Drip

Table 8. DA

Component name

Direct insertion

EnKF

EnSRF

EKF

EnKS

PF

DA OBS syntheticsm

DA OBS syntheticwl

DA OBS HYDROWEBWL
DA OBS syntheticsnd

DA OBS syntheticSnowTB
DA OBS SNODEP

DA OBS USAFSI

DA OBS PMW_snow

DA OBS ANSA_SCF

DA OBS ESACCI_sm

DA OBS THYSM

44

Default state
On
On

Default state
On
Off
On

Default state
On
On
On

Default state
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On



Component name

DA OBS LPRM_AMSREsm
DA OBS SMMR_SNWD
DA OBS SSMI_SNWD

DA OBS ANSA SNWD

DA OBS GCOMW_AMSRZ2L3SND

DA OBS SNODAS

DA OBS SMOPS_ASCATsm
DA OBS SMOPS_SMOSsm
DA OBS SMOPS_AMSR2sm
DA OBS SMOPS_SMAPsm
DA OBS SMOS_NESDIS

DA OBS NASA SMAPsm
DA OBS SMOS_NRTNN_L2sm
DA OBS NASA_SMAPvod
DA OBS ASO_SWE

DA OBS MCD15A2H_LAI
DA OBS GLASS LAl

DA OBS GLASS_Albedo

DA OBS MODISSPORT_LAI
DA OBS NRT_SMAPsm

DA OBS pildas

DA OBS GRACE

Table 9. Bias estimation
Component name

bias estimation

Table 10. Perturbations
Component name

perturbations

Table 11. Optimization / Parameter estimation

Component name
OPTUE ES
OPTUE LM

Default state
On
On
On
On
On
On
On
Off
Off
Off
On
On
On
On
On
On
On
On
On
On
On
On

Default state

On

Default state

On

Default state
On
On

45



Component name
OPTUE GA

OPTUE SCEUA
OPTUE MCSIM
OPTUE RWMCMC
OPTUE DEMC
OPTUE DEMCz

PE OBS template

PE OBS pesynsml
PE OBS ISCCP_Tskin
PE OBS wgPBMRsm
PE OBS CNRS

PE OBS AMSRE_SR

PE OBS LPRM_AMSREsm

PE OBS EmptyObs

PE OBS ARM

PE OBS Macon_LS data
PE OBS Global LS data
PE OBS Ameriflux

PE OBS FLUXNET

PE OBS USDA_ARSsm
PE OBS ARSsm

PE OBS ISMNsm

PE OBS SMAPsm

PE OBS UAsnow

PE OBJFUNC LS

PE OBJFUNC LM

PE OBJFUNC LL

PE OBJFUNC P

Table 12. Surface models
Component name

LSM template
Noah.2.7.1

Noah.3.2

46

Default state
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On
On

Default state
On
On
On



Component name
Noah.3.3
Noah.3.6
Noah.3.9
NoahMP.3.6
NoahMP.4.0.1
RUC.3.7
CLM.2
VIC.4.1.1
VIC.4.1.2
AWRAL.6.0.0
Mosaic
HySSIB
JULES.4.3
JULES.5.0
JULES.5.1
JULES.5.2
JULES.5.3
JULES.5.4
JULES.5.x
CABLE
FASST

CLSM F2.5
GeoWRSI.2
LSM RDHM.3.5.6
SUMMA.1.0
Crocus.8.1

Flake.1.0

NoahMP-GL.3.9.1.1

template glacier

template open water

Table 13. Forecast algorithms

Component name

ESP boot

Default state
On
On
On
On
On
On
On
On
On
On
On
On
Off
Off
Off
Off
Off
Off
Off
On
Off
On
On
On
Off
Off
Off
On
On
On

Default state

On

a7



Component name Default state

ESP conventional On
Rebuild LIS
After creating a user.cfg file you must recompile the LIS source code. First go into the make

directory and clean up.

% cd make
% gmake realclean
% cd ..

Re-run the configure script to process your user.cfg file. Then compile the LIS source code
accordingly.

[2] See the OCreating a Custom ModulefileO document found at  https:/nasa-lis.github.io/LISF/

48


https://nasa-lis.github.io/LISF/

Chapter 6. Running the Executable

This section describes how to run the LIS executable.

First you should create a directory to run LIS in. It is suggested that you run LIS in a directory that
is separate from your source code. This running directory shall be referred to as $RUNNING. Next,
copy the LIS executable into your running directory.

% cp SWORKING/LIS $RUNNING

The single-process version of LIS is executed by the following command issued in the $RUNNING
directory.

% /LIS

The parallel version of LIS must be run through an  mpirun script or similar mechanism. Assuming
that MPI is installed correctly, the LIS simulation is carried out by the following command issued
from in the $RUNNING directory.

% mpirun -np N ./LIS

The -np N flag indicates the number of processes to use in the run, where you replace N with the
number of processes to use. On a multiprocessor machine, the parallel processing capbabilities of
LIS can be exploited using this flag.

Some systems require that you submit your job into a batch queue. Please consult with your system
adminstrator for instructions on how to do this.

Note that before running LIS, you must set your environment to have an unlimited stack size. For
the Bash shell, run

% ulimit -s unlimited

To customize your run, you must modify the lis.config configuration file. See Section LIS config File
for more information.

6.1. Command line arguments
LIS [-f <file> | --file <file>]

-f <file> , --file <file>

specifies the name of the lis run-time configuration file.

By default, LIS expects the run-time configuration options to be defined in a file named lis.config .
Use this command line argument to specify an alternate run-time configuration file.

49



Chapter 7. Test-cases

This section describes how to obtain and how to use the test cases provided by the LISF
development team.

There are two categories of testcases: public tests and internal tests.

7.1. Public tests

The new LIS framework (LISF) set of public testcases include a full end-to-end suite of LDT, LIS, and
LVT cases that build off each other with several different steps, which are outlined in the table
below. The suite of testcases include generating model parameter and assimilation-based input files
using LDT, running the Noah land surface model (LSM) for a sample "open-loop" (or baseline)
experiment and a data assimilation (DA) experiment using LIS, and then comparing output from
the sample experiments using LVT.

The new public test cases are available from our main LIS webpage:
https://lis.gsfc.nasa.gov/lis-testcases

All required input and data files are bundled with each of the cases from the above website. Also,
documentation is provided that accompanies each of the cases for additional details and
information. Below the table of test cases on the webpage, users will find information about which
version, compiler and libraries used to generate and test the different test cases provided.

7.2. Internal tests

The main purpose of these test cases is for the LISF development team to internally test various
components of the LIS source code. These test cases are comprised of three parts: a testcases sub-
directory included in the LIS source code, input data, and output data.

For these test cases, we do not provide any of the input or output datasets, but users are welcome to
use the config files in these subdirectory cases as a guide to setting up their own individual
experiments and for their own testing purposes.

7.2.1. The testcases Sub-directory

The layout of the testcases sub-directory matches the layout of the top-level lis directory. For
example, LIS contains support for processing GDAS forcing data. These routines are in
lis/metforcing/gdas . The test-case for GDAS is in lis/testcases/metforcing/gdas .

These test-case sub-directories contain several files. For example, the src/testcases/metforcing/gdas
test-case contains these main files:

1. README
contains instructions on how to run the test-case.

2. ldt.config

50


https://lis.gsfc.nasa.gov/lis-testcases

is the configuration file for LDT to process input parameters for the test-case.
. lis.config

is a configuration file to set the test-case.

. MODEL_OUTPUT _LIST.TBL

is a configuration file to set the output for the test-case.

. output.ctl

is a GrADS descriptor file. This file is used with GrADS to plot the output data that you will
generate when you run LIS. You may also read this file to obtain metadata regarding the
structure of the output files. This metadata is useful in helping you plot the output using a
different program.

51



Chapter 8. Output Data Processing

This section describes how to process the generated output in various formats. The generated
output can be written in a Fortran binary, GRIB, or NetCDF format. See Section Runtime options for
more details.

The output data-sets created by running the LIS executable are written into sub-directories of the
$RUNNING/OUTPUT/SURFACEMODEL/ directory. Please note that
$RUNNING/OUTPUT/SURFACEMODEL/ is created at run-time, and that OUTPUT is a user-
configurable name. See Section Runtime options . The output data consists of ASCII text files and
model output in some binary format.

For example, assume that you performed the Noah 3.3 test case.

This run will produce a $RUNNING/OUTPUT/ directory. This directory will contain:

File Name Synopsis

SURFACEMODEL.d01.stats Statistical summary of output

SURFACEMODEL Directory containing output data

The SURFACEMODEL directory will contain sub-directories of the form YYYY/YYYYMMDD, where

YYYYis a 4-digit year and YYYYMMDD is a date written as a 4-digit year, 2-digit month and a 2-digit
day; both corresponding to the running dates of the simulation.

For this example, SURFACEMODELwill containa 2002/20021030 sub-directory.
Its contents are the output files generated by the executable. They are:

¥ LIS_HIST_200210300000.d01.gs4r
¥ LIS_HIST_200210300300.d01.gs4r
¥ LIS_HIST_200210300600.d01.gs4r
¥ LIS_HIST_200210300900.d01.gs4r
¥ LIS_HIST_200210301200.d01.gs4r
¥ LIS_HIST_200210301500.d01.gs4r
¥ LIS_HIST_200210301800.d01.gs4r
¥ LIS _HIST_200210302100.d01.gs4r
Note, each file name contains a date-stamp marking the year, month, day, hour, and minute that the
data correspond to. The output data files for other land surface models are similar. Here the gs4r

extension corresponds to the Fortran binary output format. The output data files for other binary
formats are similar.

The actual contents of the output files depend on the settings in the lis.config configuration file and
the OModel output attributes fileO file defined within the lis.config configuration file. See Section
Model output configuration

52



8.1. Fortran binary output format

For the Fortran binary format, LIS writes the output data as 4-byte REALs in sequential access
mode.

The order in which the variables are written is the same order as in the statistical summary file;
e.g., SURFACEMODEL.dO01.stats.

The generated output can be written in a 2-D grid format or as a 1-d vector. See Section Runtime
options for more details. If written as a 1-d vector, the output must be converted into a 2-d grid
before it can be visualized. This is left as an exercise for the reader.

8.2. GRIB1 output format

GRIB1 is a self-describing data format. The output files produced in GRIB1 can be inspected by
using either the utility  wgrib (http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html ) or the
utility grib_dump(provided with GRIB-API; see Section [ssec_requiredlibs] ).

8.3. NetCDF output format

NetCDF is a self-describing format. The output files produced in NetCDF can be inspected by using
the utility ncdumpgprovided with NetCDF; see Section [ssec_requiredlibs] ).

53


http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

Chapter 9. LIS config File

This section describes the options in the

lis.config file.

Not all options described here are available in the public version of LIS.

9.1. Overall driver options

Running mode:specifies the running mode used in LIS. Acceptable values are:

Value

OretrospectiveO

ORTM forwardO
OAGRMET opsO
OWRF coupling®
OGCE coupling®

OGFS couplingd
Oparameter estimationO
Oensemble smootherO

OforecastO

Example lis.config entry

Running mode: retrospective

Map projection of the LIS domain:

Acceptable values are:

Value
latlon

mercator

lambert

gaussian

polar

UTM

hrap

54

Description

Retrospective mode

RTM forward mode

AFWA AGRMET mode
Coupled WRF mode
Coupled GCE mode
Coupled GFS mode
Parameter estimation mode
Ensemble smoother mode

Forecast simulation mode

specifies the map projection of the LIS domain used for the run.

Description
Lat/Lon projection with SW to NE data ordering

Mercator projection with SW to NE data
ordering

Lambert conformal projection with SW to NE
data ordering

Gaussian domain

Polar stereographic projection with SW to NE
data ordering

UTM domain

Hydrologic Rainfall Analysis Project (HRAP) grid



Example lis.config entry

Map projection of the LIS domain: latlon

Number of nests: specifies the number of nests used for the run. Values 1 or higher are acceptable.
The maximum number of nests is limited by the amount of available memory on the system. The
specifications for different nests are done using white spaces as the delimiter. Please see below for
further explanations. Note that all nested domains should run on the same projection and same
land surface model.

Example lis.config entry

Number of nests: 1

Number of surface model types: specifies the number of surface model types used for the run.
Values of 1 through LIS rc%max_model_type&urrently equal to 3) are acceptable.

Example lis.config entry

Number of surface model types: 1

Surface model types: specifies the surface model types used for the run. Acceptable values are:

Value Description

LSM land surface model
Lake lake model

Glacier glacier model
Openwater open water surface type

Example lis.config entry

Surface model types: LSM

Surface model output interval: specifies the surface model output interval.
See Section Defining a time interval ~ for a description of how to specify a time interval.

Example lis.config entry

Surface model output interval: 3hr

Land surface model: specifies the land surface model to run. Acceptable values are:

Value Description

none template Ism

55



Value
Noah.2.7.1
Noah.3.2
Noah.3.3
Noah.3.6
Noah.3.9
Noah-MP.3.6
Noah-MP.4.0.1
RUC.3.7
CLM.2
VIC.4.1.1
VIC.4.1.2
Mosaic
HySSiB
GeoWRSI.2
JULES.5.0
CABLE.1.4b
FASST
OCLSM F2.50
RDHM.3.5.6
AWRAL.6.0.0

Example lis.config entry

Land surface model: Noah.2.7.1

Description

Noah version 2.7.1
Noah version 3.2

Noah version 3.3

Noah version 3.6

Noah version 3.9
Noah-MP version 3.6
Noah-MP version 4.0.1
RUC version 3.7

CLM version 2.0

VIC version 4.1.1

VIC version 4.1.2.1
Mosaic

Hy-SSiB

GeoWRSI version 2.0
JULES version 5.0
CABLE version 1.4b
FASST

Catchment Fortuna-2_5
RDHM 3.5.6 (SAC-HTET and SNOW-17)

AWRA-L version 6.0.0

Lake model: specifies the lake model to run. Acceptable values are:

Value

FLAKE.1.0

Example lis.config entry

Lake model:

Description

FLAKE version 1.0

Open water model: specifies the open water model to run. Acceptable values are:

56



Value Description

Otemplate open waterO template open water model
Example lis.config entry

Open water model:

land slide model:  specifies the land slide model to run. Acceptable values are:

Value Description
OGLSO GLS model
OTRIGRSO TRIGRS model

Example lis.config entry

land slide model:

Number of met forcing sources: specifies the number of met forcing datasets to be used. Acceptable
values are 0 or higher.

Example lis.config entry

Number of met forcing sources: 1

Met forcing chosen ensemble member: specifies the desired ensemble member from a given forcing
data source to be assigned across all LIS ensemble members. This option is enabled only if the met
forcing data source contains its own ensembles.

Example lis.config entry

Met forcing chosen ensemble member:

Blending method for forcings: specifies the blending method to combine forcings when one or
more forcing datasets are used. Acceptable values are:



Value

overlay

ensemble

Example lis.config entry

Blending method for forcings: overlay

Met forcing sources:

Description

Datasets are overlaid on top of each other in the
order they are specified. For example, the
forcing dataset in the second column is overlaid
on top of the forcing dataset in the first column.
In other words, the forcing data specified in the
second column will be used in place of forcing
data that is specified in the first column, for
locations within the spatial extent of the second
columnOs forcing data. As an example, a user
could specify a forcing dataset with a global
extent in the first column and a forcing dataset
with a regional extent in the second column. All
locations within the regional extent of the
second columnOs forcing data will use that data
as forcing, while locations outside of this
regional extent will use data from the global
extent of the first columnOs forcing data. This
continues for the number of met forcing sources
specified, with the right-most column having the
higher priority to be used as forcing, given its
spatial extent. Choose this method when using
just one forcing dataset.

Each forcing dataset is assigned to a separate
ensemble member.

specifies the met forcing data sources for the run. The values should be

specified in a column format. Acceptable values for the sources are:

Value

OnoneO

OGDASO
OGEOSS forecastO
OGEFS forecastO
OECMWFO
OGSWP10
OGSWP20
OAGRMETO
OPRINCETONO

58

Description

None

GDAS

GEOSS5 Forecast
GEFS Forecast
ECMWF

GSWP1

GSWP2
AGRMET

Princeton



Value

ONLDAS20
OGLDASO

OGFSO
OMERRA20
OCMAPO

OTRMM 3B42RTO
OTRMM 3B42RTV70
OTRMM 3B42V60
OTRMM 3B42V70
OCPC CMORPHO
OGPM IMERGO
OCPC STAGEIIO
OCPC STAGEIVO
ONARRO
ORFE2(daily)O
ORFE2(GDAS bias-corrected)O
OCHIRPS20
OSCANO
OD2PCPOKLO
OAGRMET radiationO
OBondvilleO
OTRIGRS testO
OSNOTELO

OVIC processed forcingO
OPALS station forcingO
OPET USGSO
ONAM2420
OWRFoutO
OWRFoutv20
OWRFoutv20

OWRF AKO
OLDT-generatedO

OCLIM-StandardO

Description

NLDAS2

GLDAS

GFS

MERRA2

CMAP

TRMM 3B42RT

TRMM 3B42RTV7

TRMM 3B42V6

TRMM 3B42V7

CMORPH from CPC

GPM IMERG data from NASA
STAGEII from CPC

STAGELIV from CPC

North American Regional Reanalysis
Daily rainfall estimator

RFE2 data bias corrected to GDAS
UCSB CHIRPS v2.0 precipitation dataset
SCAN

D2PCPOKL

AGRMET radiation

Bondville site data

test data for TRIGRS model
SNOTEL data

VIC processed forcing

PALS station forcing

USGS PET 1.0 deg

NAM 242 AWIPS Grid -- Over Alaska
WRF output

NCAR-WRF 4km output
NCAR-WRF 4km output forcing
NCAR-WRF Alaska domain forcing
LDT-generated forcing files

Forcing climatologies (LDT-generated)

59



Value Description

OGenEnsFcstO Generic ensemble forecast reader
OPPTEnsFcstO Precipitation-only ensemble forecast reader
OAWAPO AWAP precipitation data

OGDAS T15340 NCEP-specific GDAS T1534 forcing data
OERA50 ERAGS reanalysis meteorology

OAWRAL processed forcingO AWRA-L processed forcing

OPLUMBER20 PLUMBER?2 forcing

OGDDPO NEX GDDP forcing

OCOAMPSoutO COAMPS output forcing

Example lis.config entry

Met forcing sources: GDAS

Topographic correction method (met forcing): specifies whether to use elevation correction for
base forcing. Acceptable values are:

Value Description

Onone® Do not apply topographic correction for forcing
Olapse-rateO Use lapse rate correction for forcing
Oslope-aspectO Apply slope-aspect correction for forcing

Example lis.config entry

Topographic correction method (met forcing): "lapse-rate"

Enable spatial downscaling of precipitation: specifies whether to use spatial downscaling of
precipitation. Acceptable values are:

Value Description
0 Do not enable spatial downscaling
1 Enable spatial downscaling

Example lis.config entry

Enable spatial downscaling of precipitation: 0

Spatial interpolation method (met forcing): specifies the type of interpolation scheme to apply to
the met forcing data. Acceptable values are:

60



Value Description

Obilinear® bilinear scheme
Obudget-bilinear® conservative scheme
OneighborO neighbour scheme

Bilinear interpolation uses 4 neighboring points to compute the interpolation weights. The
conservative approach uses 25 neighboring points. If the conservative option is turned on, it is used
to interpolate the precipitation field only (to conserve water). Other fields will still be interpolated
with the bilinear option.

Example lis.config entry

Spatial interpolation method (met forcing): bilinear

Spatial upscaling method (met forcing): specifies the type of upscaling scheme to apply to the met
forcing data. Acceptable values are:

Value Description

OaverageO averaging scheme

Please note that not all met forcing readers support upscaling of the met forcing data.

Example lis.config entry

Spatial upscaling method (met forcing): average

Temporal interpolation method (met forcing): specifies the type of temporal interpolation scheme
to apply to the met forcing data. Acceptable values are:

Value Description
linear linear scheme
trilinear uber next scheme

The linear temporal interpolation method computes the temporal weights based on two points.
Ubernext computes weights based on three points. Currently the ubernext option is implemented
only for the GSWP forcing.

Example lis.config entry

Temporal interpolation method (met forcing): linear

Enable new zterp correction (met forcing): specifies whether to enable the new zterp correction.
Acceptable values are:

61



Value Description
false. do not enable

true. enable

Defaults to .false.
This is a scalar option, not per nest.

This new zterp correction addresses an issue that potentially can occur at sunrise/sunset for some
forcing datasets when running at small time steps (like 15mn). In some isolated cases, SWdown may
have a large unrealistic spike. This correction removes the spike. It also can affect SWdown around
sunrise/sunset by up 200 W/m2. Users are advised to run their own tests and review SWdown to
determine which setting is best for them.

For comparison against older LIS runs, set this option to false.

Example lis.config entry

Enable new zterp correction (met forcing): .false.

9.2. Runtime options

Forcing variables list file: specifies the file containing the list of forcing variables to be used.
Please refer to the sample forcing_variables.txt (Section Specification of Input Forcing Variables )
file for a complete specification description.

Example lis.config entry

Forcing variables list file:  ./input/forcing_variables.txt

Output methodology: specifies whether to write output as a 1-D array containing only land points or
as a 2-D array containing both land and water points. 1-d tile space includes the subgrid tiles and
ensembles. 1-d grid space includes a vectorized, land-only grid-averaged set of values. Acceptable
values are:

Value Description

Onone® Do not write output

O1d tilespaceO Write output in a 1-D tile domain

O2d gridspaceO Write output in a 2-D grid domain

O1d gridspaceO Write output in a 1-D grid domain

0O2d ensemble gridspaceO Write individual ensemble member output

When writing output using the O2d gridspaceO setting with ensembles enabled, LIS will average the
ensemble members into one field to write into the output file; when using the O2d ensemble
gridspaceO option, LIS will write each ensemble member into the output file.

62



Note that the O2d ensemble gridspaceO setting requires setting the  Output data format: option to
OnetcdfO.

Example lis.config entry

Output methodology: "2d gridspace"

Output model restart files: specifies whether to write model restart files. Acceptable values are:
Value Description

0 Do not write restart files

1 Write restart files

Example lis.config entry

Output model restart files: 1

Output data format:  specifies the format of the model output data. Acceptable values are:

Value Description

ObinaryO Write output in binary format

Odistributed binaryO Write output in distributed binary format where
each processor writes outputs for the respective
local domain

Ogrib10 Write output in GRIB-1 format

Ogrib20 Write output in GRIB-2 format

OnetcdfO Write output in netCDF format

Example lis.config entry

Output data format: netcdf

Output naming style:  specifies the style of the model output names and their organization.
Acceptable values are:

Value Description

02 level hierarchy® 2 levels of hierarchy

O3 level hierarchy® 3 levels of hierarchy

O4 level hierarchyO 4 levels of hierarchy

OWMO conventionO WMO convention for weather codes

63



Example lis.config entry

Output naming style: "3 level hierarchy"

Enable output statistics: specifies whether to write the ASCII statistics file for the output data.
Acceptable values are:

Value Description
true. Enable writing of the statistics file
false. Disable writing of the statistics file

Defaults to .false.

Example lis.config entry

Enable output statistics: .true.

Output GRIB Table Version: specifies GRIB table version.
Output GRIB Center Id: specifies GRIB center id.

Output GRIB Subcenter Id: specifies GRIB sub-center id.
Output GRIB Grid Id:  specifies GRIB grid id.

Output GRIB Process Id: specifies GRIB process id.

Output GRIB Packing Type: specifies the algorithm used to pack data into the GRIB message.
Acceptable values are:

grid_simple grid_simple

grid_jpeg grid_jpeg (GRIB-2 only) Do not use.
There is an open issue regarding packing
constant data with grid_jpeg.

Though untested, there are more packingType available as listed at https://confluence.ecmwf.int/
display/ECC/GRIB+Keys

Example lis.config entry

Output GRIB Table Version: 130

Output GRIB Center Id: 173

Output GRIB Subcenter Id: 4

Output GRIB Grid Id: 11

Output GRIB Process Id: 1

Output GRIB Packing Type: grid_simple

For GRIB-2 try:

64


https://confluence.ecmwf.int/display/ECC/GRIB+Keys
https://confluence.ecmwf.int/display/ECC/GRIB+Keys

Example lis.config entry

Output GRIB Table Version: 13

Output GRIB Center Id: 173

Output GRIB Subcenter Id: 4

Output GRIB Grid Id: 0

Output GRIB Process I1d: 1

Output GRIB Packing Type: grid_simple

Start mode: specifies if a restart mode is being used. Acceptable values are:

Value Description

restart A restart mode is being used

coldstart A cold start mode is being used, no restart file
read

When the cold start option is specified, the program is initialized using the LSM-specific initial
conditions (typically assumed uniform for all tiles). When a restart mode is used, it is assumed that
a corresponding restart file is provided depending upon which LSM is used. The user also needs to
make sure that the ending time of the simulation is greater than model time when the restart file
was written.

Example lis.config entry

Start mode: coldstart

The start time is specified in the following format:

Variable Value Description

Starting year: integer 2001 D present specifying starting year
Starting month: integer 1 B 12 specifying starting month
Starting day: integer 1 D 31 specifying starting day
Starting hour: integer 0 D 23 specifying starting hour
Starting minute: integer 0 B 59 specifying starting minute
Starting second: integer 0 B 59 specifying starting second

Example lis.config entry

Starting year: 2002
Starting month: 10
Starting day: 29
Starting hour: 1
Starting minute: 0

Starting second: 0



The end time is specified in the following format:

Variable Value Description

Ending year: integer 2001 D present specifying ending year
Ending month: integer 1 B 12 specifying ending month
Ending day: integer 1 B 31 specifying ending day
Ending hour: integer 0 B 23 specifying ending hour
Ending minute: integer 0 B 59 specifying ending minute
Ending second: integer 0 B 59 specifying ending second

Example lis.config entry

Ending year: 2002
Ending month: 10
Ending day: 31
Ending hour: 1
Ending minute: 0
Ending second: 0
LIS time window interval: specifies the interval at which the LIS run loop cycles, used in the

Oensemble smootherO running mode.

Example lis.config entry

LIS time window interval:

Undefined value: specifies the undefined value. The default is set to -9999.

Example lis.config entry

Undefined value: -9999

Output directory:  specifies the name of the top-level output directory. Acceptable values are any 40
character string. The default value is set to OUTPUT. For simplicity, throughout the rest of this

document, this top-level output directory shall be referred to by its default name,

SWORKING/LIS/OUTPUT.

Example lis.config entry

Output directory: OUTPUT

Diagnostic output file: specifies the name of run time diagnostic file. Acceptable values are any 40
character string.

66



Example lis.config entry

Diagnostic output file: lislog

Number of ensembles per tile:  specifies the number of ensembles of tiles to be used. The value
should be greater than or equal to 1.

Example lis.config entry

Number of ensembles per tile: 1

The following options are used for subgrid tiling based on vegetation

Maximum number of surface type tiles per grid: defines the maximum surface type tiles per grid
(this can be as many as the total number of vegetation types).

Example lis.config entry

Maximum number of surface type tiles per grid: 1

Minimum cutoff percentage (surface type tiles): defines the smallest percentage of a cell for
which to create a tile. The percentage value is expressed as a fraction.

Example lis.config entry

Minimum cutoff percentage (surface type tiles): 0.05

Maximum number of soil texture tiles per grid: defines the maximum soil texture tiles per grid
(this can be as many as the total number of soil texture types).

Example lis.config entry

Maximum number of soil texture tiles per grid: 1

Minimum cutoff percentage (soil texture tiles): defines the smallest percentage of a cell for
which to create a tile. The percentage value is expressed as a fraction.

Example lis.config entry

Minimum cutoff percentage (soil texture tiles): 0.05

Maximum number of soil fraction tiles per grid: defines the maximum soil fraction tiles per grid
(this can be as many as the total number of soil fraction types).

Example lis.config entry

Maximum number of soil fraction tiles per grid: 1

67



